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A B S T R A C T

Hybrid methods are widely used in many areas of applied mathematics. One of the simplest and most common
problems in this field is root finding, for which various methods exist. Some of the most efficient approaches
combine two or more techniques into hybrid methods. Among these are the Dekker and Brent methods, for
which we propose a modification to ensure that the search interval is halved in each iteration. We apply this
modification to two examples: a transcendental equation and a cubic equation of state. The results demonstrate
that the proposed modifications guarantee at least interval halving and offer a slight improvement in the
efficiency of the root-finding process.
1. Introduction

The use of numerical methods is common in scientific studies [1–
7], particularly for solving the critical problem of locating the real
root of a nonlinear algebraic equation (𝑓 (𝑥) = 0) [8,9]. The literature
presents a wide array of root-finding methods, both analytical and
numerical [10], each with its own advantages and disadvantages. While
analytical solutions for algebraic equations are limited – primarily
applicable to quadratic, cubic, and quartic equations [11–15] – most
equations require numerical methods for their resolution.

No single numerical root-finding method excels for all
functions [13]. Consequently, hybrid methods have been proposed
to leverage the strengths of various approaches [16]. Among these,
the Dekker method stands out for combining the convergence speed
of the secant method with the reliability of the bisection method,
as well as incorporating inverse quadratic interpolation to accelerate
convergence. However, in certain iterations and for specific functions,
this method may exhibit poorer interval reduction than the bisection
method.

This work aims to propose simple modifications to the original
Dekker and Brent methods [17,18], ensuring that the interval contain-
ing the function’s root is at least halved in each iteration. Section 2
provides a detailed description of how the original methods are adapted
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to guarantee this interval reduction. Section 3 compares the perfor-
mance of the original and modified methods through two examples,
and finally, Section 4 presents the conclusions and future directions
regarding the proposed improvements.

2. Methods

This section presents the proposed modifications to the Dekker and
Brent methods.

2.1. Dekker method

The Dekker method combines the guaranteed convergence of the
bisection method with the efficiency of the secant method. In each
iteration, the secant method is used unless the bisection method is
deemed more appropriate.

Considering a continuous function 𝑓 (𝑥) over the initial interval
[

𝑎0, 𝑏0
]

, such that there is at least one root (𝜉) within this interval, i.e.,
𝑓
(

𝑎0
)

𝑓
(

𝑏0
)

< 0. In each iteration, two approximations of the root are
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Fig. 1. Graphical illustration of Dekker method.
b

calculated, namely, 𝑞 using the secant method formula with Eq. (1) and
using the bisection method formula with Eq. (2).

𝑞 = 𝑏𝑘 − 𝑓
(

𝑏𝑘
) 𝑏𝑘−1 − 𝑏𝑘
𝑓
(

𝑏𝑘−1
)

− 𝑓
(

𝑏𝑘
) . (1)

𝑚 =
𝑎𝑘 + 𝑏𝑘

2
. (2)

In the first iteration 𝑏𝑘 = 𝑏0 and 𝑏𝑘−1 = 𝑎0 for the secant method.
In the subsequent iteration, 𝑏𝑘+1 is set to 𝑞 if 𝑞 falls between 𝑚 and 𝑏𝑘,
therwise, 𝑏𝑘+1 is set to 𝑚. The value of 𝑎𝑘+1 can be chosen as either
𝑘 or 𝑏𝑘, with the selection made to ensure that 𝑓

(

𝑎𝑘+1
)

𝑓
(

𝑏𝑘+1
)

< 0.
fter this, the values of 𝑎𝑘+1 and 𝑏𝑘+1 may be swapped to guarantee

hat ‖𝑓
(

𝑏𝑘+1
)

‖ ≤ ‖𝑓
(

𝑎𝑘+1
)

‖ ensuring that 𝑏𝑘+1 provides a better
approximation of the function root. The iterative process continues
until the search interval becomes smaller than the specified tolerance
(𝜀), i.e., ‖𝑏𝑘 − 𝑎𝑘‖ ≤ 𝜀, at which point the approximated root is taken
as 𝑏𝑘.

As shown in Fig. 1(a), the interval reduction can be less efficient
than in the bisection method, where the interval is consistently halved.
To overcome this situation, we propose a small modification of the
selection of 𝑎𝑘+1. If 𝑏𝑘+1 = 𝑞 and 𝑓 (𝑚) 𝑓

(

𝑏𝑘+1
)

< 0, then the selection
is 𝑎𝑘+1 = 𝑚 as shown in Fig. 1(b), so the interval reduction is always
reater than 50%. The pseudocode of this modification is presented in

the Algorithm 1.

2.2. Brent method

The Brent method improves upon the Dekker method by using
a three-point approach that combines the bisection, secant, and in-
verse quadratic interpolation methods. The main idea is to apply in-
verse quadratic interpolation whenever possible, as it offers faster
convergence. However, if the new approximation falls outside the
current search interval, the secant or bisection method is used instead.
Additionally, quadratic interpolation cannot be applied if repeated
approximations occur, as this would lead to division by zero.

Considering an interval
[

𝑎𝑘, 𝑏𝑘
]

where 𝑏𝑘 is a better approximation
of the function root, i.e., ‖𝑓

(

𝑏𝑘
)

‖ ≤ ‖𝑓
(

𝑎𝑘
)

‖, a new search interval
[

𝑎𝑘+1, 𝑏𝑘+1
]

is generated at each iteration such that 𝑓
(

𝑎𝑘+1
)

𝑓
(

𝑏𝑘+1
)

<
0 and ‖𝑓

(

𝑏𝑘+1
)

‖ ≤ ‖𝑓
(

𝑎𝑘+1
)

‖. The points 𝑎𝑘, 𝑏𝑘 and 𝑏𝑘−1 (with
𝑏𝑘−1 = 𝑎0 for the initial iteration) are used to calculate the point 𝑠
using an interpolation method. If the three points are different it uses
the quadratic interpolation formula with Eq. (3) otherwise, it uses the
linear interpolation formula with Eq. (4) (see Eqs. (3) and (4) in Box I).

The value of 𝑠 is accepted if it lies between 𝑏𝑘 and
(

3 𝑎𝑘 + 𝑏𝑘
)

∕4. If 𝑠
does not fall within this range, it must be calculated using the bisection
method: formula with Eq. (5).

𝑎𝑘 + 𝑏𝑘
𝑠 =
2

. (5)

2 
Algorithm 1 Modified Dekker algorithm
Input: Function 𝑓 (𝑥), search interval 𝑎 and 𝑏 and tolerances 𝑡𝑜𝑙1 and
𝑡𝑜𝑙2
Initialize the iteration counter, 𝑘 ← 0
if |𝑓 (𝑎)| < |𝑓 (𝑏)| then

a, b ← b, a
end if
For the first iteration 𝑏𝑘−1 ← 𝑎
while |𝑏 − 𝑎| > 𝑡𝑜𝑙1 and |𝑓 (𝑏)| > 𝑡𝑜𝑙2 do

𝑘 ← 𝑘 + 1
𝑞 ← 𝑏𝑘 − 𝑓

(

𝑏𝑘
) 𝑏𝑘−1 − 𝑏𝑘
𝑓
(

𝑏𝑘−1
)

− 𝑓
(

𝑏𝑘
)

𝑚 ←
𝑎𝑘 + 𝑏𝑘

2
if 𝑞 ≥ min (𝑏, 𝑚) and 𝑞 ≤ max (𝑏, 𝑚) then

𝑏𝑘+1 ← 𝑞
else

𝑏𝑘+1 ← 𝑚
end if
if 𝑓

(

𝑎𝑘
)

𝑓
(

𝑏𝑘+1
)

> 0 then
𝑎𝑘+1 ← 𝑏𝑘

else if 𝑞 ≥ min (𝑏, 𝑚) and 𝑞 ≤ max (𝑏, 𝑚) and 𝑓 (𝑚) 𝑓
(

𝑏𝑘+1
)

< 0
then

𝑎𝑘+1 ← 𝑚
end if
if ||

|

𝑓
(

𝑎𝑘+1
)

|

|

|

< |

|

|

𝑓
(

𝑏𝑘+1
)

|

|

|

then
𝑎𝑘+1, 𝑏𝑘+1 ← 𝑏𝑘+1, 𝑎𝑘+1

end if
end while
Output: 𝑥appr ox ← 𝑏𝑘, 𝑓

(

𝑥appr ox
)

← 𝑓
(

𝑏𝑘
)

and 𝑛it er ← 𝑘

To prevent the method from becoming excessively slow, the bisec-
tion method must be applied if ‖𝑠 − 𝑏𝑘‖ < ‖𝑏𝑘 − 𝑏𝑘−1‖∕2 when the
bisection method was used in the previous iteration. Alternatively, if
an interpolation method was applied in the last iteration, the bisection
method should be used if ‖𝑠 − 𝑏𝑘‖ < ‖𝑏𝑘−1 − 𝑏𝑘−2‖∕2.

For defining of the new search interval, we set 𝑏𝑘+1 = 𝑠. If
𝑓
(

𝑎𝑘
)

𝑓
(

𝑏𝑘+1
)

< 0, then 𝑎𝑘+1 = 𝑎𝑘 otherwise 𝑎𝑘+1 = 𝑏𝑘.
The modification proposed in this work involves two key changes.

First, we adjust the condition for accepting the value of 𝑠 generated
y the interpolation method, this value will only be accepted if it

lies between 𝑏𝑘 and
(

𝑎𝑘 + 𝑏𝑘
)

∕2. Second, we modify the criterion for
selecting 𝑎𝑘+1. If 𝑓

(

𝑎𝑘
)

𝑓
(

𝑏𝑘+1
)

< 0 an additional test is made
(( ) ) ( ) ( )
evaluating if 𝑓 𝑎𝑘 + 𝑏𝑘 ∕2 𝑓 𝑏𝑘+1 < 0 so 𝑎𝑘+1 = 𝑎𝑘 + 𝑏𝑘 ∕2. The
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𝑠 = 𝑏𝑘 +

𝑓
(

𝑏𝑘
)

𝑓
(

𝑎𝑘
)

[(

1 − 𝑓
(

𝑏𝑘
)

𝑓
(

𝑏𝑘−1
)

)

(

𝑎𝑘 − 𝑏𝑘
)

+
𝑓
(

𝑎𝑘
)

𝑓
(

𝑏𝑘−1
)

(

𝑓
(

𝑏𝑘
)

𝑓
(

𝑏𝑘−1
) −

𝑓
(

𝑎𝑘
)

𝑓
(

𝑏𝑘−1
)

)

(

𝑏𝑘−1 − 𝑏𝑘
)

]

(

𝑓
(

𝑏𝑘
)

𝑓
(

𝑏𝑘−1
) − 1

) (
𝑓
(

𝑏𝑘
)

𝑓
(

𝑎𝑘
) − 1

) (
𝑓
(

𝑎𝑘
)

𝑓
(

𝑏𝑘−1
) − 1

) . (3)

𝑠 = 𝑏𝑘 − 𝑓
(

𝑏𝑘
) 𝑏𝑘−1 − 𝑏𝑘
𝑓
(

𝑏𝑘−1
)

− 𝑓
(

𝑏𝑘
) . (4)

Box I.
Algorithm 2 Modified Brent algorithm
Input: Function 𝑓 (𝑥), search interval 𝑎 and 𝑏 and tolerances 𝑡𝑜𝑙1 and 𝑡𝑜𝑙2
Initialize the iteration counter, 𝑘 ← 0
if |𝑓 (𝑎)| < |𝑓 (𝑏)| then

a, b ← b, a
end if
For the first iteration 𝑏𝑘−1 ← 𝑎
while |𝑏 − 𝑎| > 𝑡𝑜𝑙1 and |𝑓 (𝑏)| > 𝑡𝑜𝑙2 do

𝑘 ← 𝑘 + 1
if 𝑏𝑘 ≠ 𝑏𝑘−1 and 𝑎𝑘 ≠ 𝑏𝑘−1 then

𝑠 ← 𝑏𝑘 +

𝑓
(

𝑏𝑘
)

𝑓
(

𝑎𝑘
)

[(

1 − 𝑓
(

𝑏𝑘
)

𝑓
(

𝑏𝑘−1
)

)

(

𝑎𝑘 − 𝑏𝑘
)

+
𝑓
(

𝑎𝑘
)

𝑓
(

𝑏𝑘−1
)

(

𝑓
(

𝑏𝑘
)

𝑓
(

𝑏𝑘−1
) −

𝑓
(

𝑎𝑘
)

𝑓
(

𝑏𝑘−1
)

)

(

𝑏𝑘−1 − 𝑏𝑘
)

]

(

𝑓
(

𝑏𝑘
)

𝑓
(

𝑏𝑘−1
) − 1

) (
𝑓
(

𝑏𝑘
)

𝑓
(

𝑎𝑘
) − 1

) (
𝑓
(

𝑎𝑘
)

𝑓
(

𝑏𝑘−1
) − 1

)

else
𝑠 ← 𝑏𝑘 − 𝑓

(

𝑏𝑘
) 𝑏𝑘−1 − 𝑏𝑘
𝑓
(

𝑏𝑘−1
)

− 𝑓
(

𝑏𝑘
)

end if
if 𝑠 ≤ min (𝑏, (3 𝑎 + 𝑏) ∕4) or 𝑠 ≥ max (𝑏, (3 𝑎 + 𝑏) ∕4) then

𝑠 ←
𝑎𝑘 + 𝑏𝑘

2
end if
𝑏𝑘+1 ← 𝑠
if 𝑓

(

𝑎𝑘
)

𝑓
(

𝑏𝑘+1
)

> 0 then
𝑎𝑘+1 ← 𝑏𝑘

else if 𝑓 ((

𝑎𝑘 + 𝑏𝑘
)

∕2
)

𝑓
(

𝑏𝑘+1
)

< 0 then
𝑎𝑘+1 ←

(

𝑎𝑘 + 𝑏𝑘
)

∕2
end if
if ||

|

𝑓
(

𝑎𝑘+1
)

|

|

|

< |

|

|

𝑓
(

𝑏𝑘+1
)

|

|

|

then
𝑎𝑘+1, 𝑏𝑘+1 ← 𝑏𝑘+1, 𝑎𝑘+1

end if
end while
Output: 𝑥appr ox ← 𝑏𝑘, 𝑓

(

𝑥appr ox
)

← 𝑓
(

𝑏𝑘
)

and 𝑛it er ← 𝑘
l

pseudocode for the modified Brent algorithm is presented in Algorithm
2.

The Brent method already includes conditions to prevent slow con-
vergence, however, the proposed modification ensures that the search
nterval is at least halved in each iteration.

The methods presented are tested using two examples, which are
discussed in the following section. The implementations of these meth-
ods were carried out in Python 3.

3. Results and discussion

As a first case study to verify the effects of the proposed mod-
ifications, we will use the following function formula with Eq. (6).
This function has three root (namely, 𝜉1 ≈ 2.1584, 𝜉2 ≈ 4.6196 and
𝜉3 ≈ 7.2550) as illustrated in Fig. 2.

𝑓 (𝑥) = exp
(

−𝑥2
)

− 2 cos (𝑥) + 𝑥 − 5 . (6)

4 2 2

3 
To analyze the numerical methods, we focus on finding the first root
(𝜉1 ≈ 2.1584). The initial interval was set with 𝑎 = 1.0 and 𝑏 = 3.0. Since
the value of 𝑏𝑘 represents the best approximation of the solution in each
iteration, Fig. 3 illustrates the reduction of function value for the study
case. The results for Dekker and modified Dekker methods in Fig. 3(a),
while 3(b) presents the results for Brent and modified Brent methods.

Examining the data presented in these figures, we observe that
the modification to the Dekker method yielded improved results from
the very first iteration, while the modification to the Brent method
demonstrated clear advantages primarily in the later iterations. Ad-
ditionally, as illustrated in Figs. 4(a) and 4(b), the original methods
exhibit some iterations where the reduction of the search interval is
ess than half, whereas the proposed methods consistently achieved a

minimum reduction of 50% of the search interval for each iteration.
Notably, in certain iterations the interval reduction for the original
methods is very small.
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Fig. 2. Study case function 1.

A practical application of root finding methods can be found in
solving cubic equation of state. Steffen and Silva [16] introduced a
eneric equation of state: formula with Eq. (7). They also expressed

this equation in a polynomial form based on a dimensionless property
𝑉 ∕𝑏, as formula with Eq. (8).

𝑃𝑟 =
𝑃 =

𝑇𝑟 1
( )

−
𝛬 𝛼 (𝜔, 𝑇𝑟

)

2
1

( )2 ( )

, (7)

𝑃𝐶 𝛤 𝑉

𝑏
− 1 𝛤 𝑉 + 𝜆 𝑉 + 𝜎

4 
(𝑉
𝑏

)3
−
(

1 − 𝜆 +
𝑇𝑟
𝛤 𝑃𝑟

)

(𝑉
𝑏

)2
+

(

𝜎 − 𝜆 − 𝜆
𝑇𝑟
𝛤 𝑃𝑟

+
𝛬 𝛼 (𝜔, 𝑇𝑟

)

𝛤 2 𝑃𝑟

)

(𝑉
𝑏

)

−

(

𝜎 + 𝜎
𝑇𝑟
𝛤 𝑃𝑟

+
𝛬 𝛼 (𝜔, 𝑇𝑟

)

𝛤 2 𝑃𝑟

)

= 0 ,

(8)

where the values of 𝜆 and 𝜎 are substance-independent, and each set
of these parameters represents a specific equation of state, 𝛬 and 𝛤 are
positive parameters whose values depend on the equation of state. 𝑇𝑟
and 𝑃𝑟 are the reduced temperature and reduced pressure, respectively,
while 𝜔 is the acentric factor, 𝑉 is the volume and 𝑏 the covolume
parameter.

For the Peng–Robinson Equation of State, the parameter values
re [19]: 𝜆 = 2, 𝜎 = −1, 𝛬 = 0.45724, 𝛤 = 0.07780 and

𝛼
(

𝜔, 𝑇𝑟
)

=
(

1 + (

0.37464 + 1.54226𝜔 − 0.26992𝜔2)
(

1 −√

𝑇𝑟
))2

. (9)

As a second case study, we consider finding the root finding of 𝑉 ∕𝑏
(a dimensionless value) for the Peng–Robinson equation of state using
the parameters 𝜔 = 0.200, 𝑇𝑟 = 0.85 and 𝑃𝑟 = 0.45. The function
profile represented by Eq. (8) is shown in Fig. 5, where it can be
bserved that there are three roots, with one located in the interval
4 ≤ 𝑉 ∕𝑏 ≤ 17, representing the volume for the vapor phase. By
pplying this interval and a tolerance of 10−10, the approximate root is
ound to be 15.0676609061.

The results presented in Fig. 6 demonstrate better performance for
the modified methods. In both modifications, the values of 𝑓 𝑏 are
( )
𝑏 𝑏

Fig. 3. Convergence for study case 1.
Fig. 4. Relative interval reduction for study case 1.
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Fig. 5. Study case function 2.

lower than the original methods in almost every iteration, and the
odified Dekker method required one fewer iteration than the original
ekker. As shown in Fig. 7, in this second case study, the modified
ethods also ensured that the search interval was at least halved in

ach iteration.

Table 1 presents the average execution time for each case evaluated
n this study. The mean time was calculated by running each case
5 
Table 1
Mean execution time.

Method Time × 105 (s)

Case study 1 Case study 2
Dekker 1.5535 1.7261
Modified Dekker 2.1913 0.6063
Brent 1.7781 1.9433
Modified Brent 0.9747 1.4467

one hundred times. Only in case study 1 did the modified Dekker
method show a slightly worse execution time. However, in all other
comparisons, the modified methods demonstrated better performance,
emphasizing the improvements proposed in this work.

4. Conclusion

In this work, we proposed modifications to the Dekker and Brent
numerical root-finding methods to ensure that the search interval
is halved in each iteration. These modifications can lead to a re-
duced number of iterations with a simple adjustment to the com-
putational code implementation. Our proposed modifications success-
fully achieved this goal, resulting in significant improvements in rel-
ative interval reduction and a modest enhancement in function value
reduction, particularly for the modified Dekker method.

As a direction for future research, we suggest applying these meth-
ods across a broader range of examples and exploring the incorporation
Fig. 6. Convergence for study case 2.
Fig. 7. Relative interval reduction for study case 2.
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of characteristics from other methods to develop hybrid approaches
that ensure fast and reliable convergence.
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